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Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral
capsids—single-protein-thick crystalline shells—from spherical to “buckled” or faceted as their radius in-
creases through a critical value determined by the competition between stretching and bending energies of a
closed two-dimensional �2D� elastic network. In the present work we generalize this approach to capsids with
nonicosahedral symmetries, e.g., spherocylindrical and conical shells. One key additional physical ingredient is
the role played by nonzero spontaneous curvature. Another is associated with the special way in which the
energy of the 12 topologically required fivefold sites depends on the “background” local curvature of the shell
in which they are embedded. Systematic evaluation of these contributions leads to a shape “phase” diagram in
which transitions are observed from icosahedral to spherocylindrical capsids as a function of the ratio of
stretching to bending energies and of the spontaneous curvature of the 2D protein network. We find that the
transition from icosahedral to spherocylindrical symmetry is continuous or weakly first order near the onset of
buckling, leading to extensive shape degeneracy. These results are discussed in the context of experimentally
observed variations in the shapes of a variety of viral capsids.
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I. INTRODUCTION

The genetic information of a virus is surrounded by a
closed shell of protein molecules, the capsid, which protects
the enclosed RNA or DNA genome molecules against enzy-
matic digestion �1�. Capsids are also exceptionally resilient
under applied mechanical forces. At the same time, a capsid
must direct the efficient release of the genome molecules into
prospective host cells. It is not surprising that the synthesis
of artificial protein cages that can reproduce such remarkable
properties is a rapidly developing area of materials science,
and yet the relevant design criteria are only beginning to be
understood �2,3�.

Most capsids have either a spherelike or a rodlike mor-
phology. Modern methods of x-ray crystallography and cry-
otransmission electron microscope tomography allow the re-
construction of the spherelike viral shells with near-atomic
resolution �4�. Spherelike shells have, nearly always, the
symmetry of an icosahedron. In many cases, the proteins �or
“subunits”� that constitute the shell can be grouped into
“capsomers,” e.g., oligomers constructed from either five
�pentamer� or six �hexamer� subunits. Pentamers are located
on 12 equidistant sites that form the vertices of an icosahe-
dron. The number of hexamers that constitute the faces
of the icosahedron adopt certain “magic” numbers given by
10�T−1�, with T an integer index equal to 1, 3, 4, 7,….
Remarkably, there are many instances in which these intri-
cately patterned icosahedral viral shells assemble spontane-
ously under appropriate in vitro conditions �5�.

Over 40 years ago, Caspar and Klug �CK� showed in a
seminal paper how the “T number” sequence of structures
could be obtained from simple geometric considerations �6�.
They constructed equilateral triangles with vertices located at
the centers of a two-dimensional hexagonal lattice �see Fig.
1�b��. If a triangle has one of its vertices at the origin then it

can be indexed by the pair of integers h and k that determine
the location of one of the two other vertices in terms of the
two basis vectors of the hexagonal lattice �Fig. 1�b��. The
icosahedron is then constructed from a folding template of
20 of such triangles, replacing a hexagon by a pentagon at
each of the 12 vertices of the icosahedron �see Figs. 1�a� and
1�c��. The CK construction has ever since remained the

FIG. 1. �Color online� CK construction of icosahedral shells.
�a� Folding template for an icosahedron consisting of 20 equilateral
triangles. The triangles are indexed by a lattice vector

A� =ha�1+ka�2 of a hexagonal lattice with basis vectors a�1 and a�2. �b�
shows the case h=3 and k=1. �c� shows an icosahedron obtained
from folding the template for this lattice vector, which corresponds
to T=h2+k2+hk=13. Note that there are six hexagons for each face
of the icosahedron, and that there are 10�T−1�=120 hexagons in
total.
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structural basis for the classification of “spherical” viral
capsids.

The CK icosahedra are isometric in the strict sense that
the construction does not change the distance between two
sites of the original hexagonal lattice �7�. Though an icosa-
hedral shell constructed from an inextensible hexagonal
sheet indeed must be isometric, actual protein materials do
support elastic strain. If an icosahedral shell is constructed
from a hexagonal sheet that does support elastic strain, then
the bending energy cost of the sharp edges of the CK icosa-
hedron �see Fig. 1�c�� can be relieved by allowing the trian-
gular faces of the icosahedron to bulge out. The resulting
elastic stretching will be referred to as the in-plane elastic
stress that must be balanced with the out-of-plane bending
energy of the sheet along the edges.

The theoretical prediction of the structure of a viral capsid
is, in general, a daunting problem in view of the complex
internal structure of the subunits. However, for capsids with
a very large numbers of subunits, one expects that the capsid
can be described by the continuum theory of elasticity. In
continuum elasticity theory, the physical properties of a shell
are determined by only a few phenomenological constants
such as the two-dimensional �2D� Young’s modulus Y of the
sheet and the Helfrich bending constant �. �The actual values
of these constants of course still depend on molecular-level
interactions between subunits.� Lidmar, Mirny, and Nelson
�8� �LMN� have developed such a continuum description for
icosahedral capsids and determined shell shapes that mini-
mize the sum of the bending and stretching energy costs. In
this approach the 12 pentagons of the CK construction are
replaced by 12 fivefold disclination defects, each of which is
surrounded by a field of elastic stress. The energy of an
icosahedral shell of area S depends only on the single dimen-
sionless quantity �=YS /�, the ratio of stretching and bend-
ing energies, known as the Föppl–von Kármán (FvK) num-
ber �9�. Figure 2 shows the continuum theory elastic energy
of an icosahedral shell—obtained by the numerical energy
minimization described in Sec. IV—as a function of the FvK
number.

The shell shape changes from �nearly� spherical to
�nearly� icosahedral at a buckling transition for � values near
a critical value �B around 3000. LMN showed that the theory
can account rather well for capsid structures of certain of the
larger viruses. More generally, they noted that larger viruses
are noticeably more polyhedral than smaller viruses, in ac-
cordance with the theory. An actual buckling transition has
been reported to take place during the expansion and matu-
ration of the T=7 HK97 viral capsid �10,11�.

The primary aim of the present paper is the extension of
the continuum theory of viral shells to include nonicosahe-
dral viruses and to construct a shape phase diagram. Our
focus is centered on nonicosahedral viruses with capsid
structures based on a hexamer-pentamer organization that is
obtainable from a generalization of the CK construction.
Shells that belong to this class—which specifically excludes
the open-ended cylindrical viruses like TMV—are sphero-
cylindrical ones commonly found among the bacteriophage
viruses, such as certain T-even phages �plus their mutants�,
as well as the �CBK and �29 bacteriophages. The capsids of
these viruses consist of two half-icosahedral caps connected

by an elongated, cylindrical, mid-portion composed of a ring
of hexamers �12�. This “buckytube” structure is also encoun-
tered as a variant of the T=7 papovaviruses �13�. Similarly,
point mutations in capsid proteins may transform an icosa-
hedral T-number shell into a tubular shell of variable length
�14�. Interesting in this context are the polymorphic viruses,
i.e., viruses whose capsids can exhibit both spherical and
tubular morphologies. Self-assembly studies of solutions of
the capsid proteins of the cowpea chlorotic mottle virus
�CCMV� �15� and the polyoma/SV40 animal virus �16�—
without, respectively, their RNA or DNA genome
molecules—report both spherelike and tubular structures
with, for the CCMV case, the relative abundance dependent
on the pH level and salt concentrations. The alfalfa mosaic
virus �AMV� is naturally polymorphic, with its multipartite
genome—RNA molecules of different lengths—separately
encapsidated by extended shells of various lengths while
self-assembly without the genome molecules will produce
T=1 icosahedral shells �17�. Finally, the human immunode-
ficiency virus �HIV� shows still broader polymorphism in its
capsid shape, including conelike structures in addition to
tubes and roughly spherical ones �18�.

Our description will be based on the LMN continuum
theory of elastic shells, but generalized to nonspherical
shapes and including the concept of spontaneous curvature,
already proposed by CK as a central determinant for capsid
assembly. This generalization was motivated by a detailed
structural study of CCMV capsids �19� that suggested the
competition between tubular and spherical geometries might
be controlled by two biophysical effects.

The first effect concerns the asymmetry of viral subunits
and capsomers with respect to the interior and the exterior of
a capsid. One aspect of this asymmetry is the fact that
CCMV capsid subunits are joined with a preferred nonzero
angle, along twofold contacts, which maximizes the number
of hydrophobic side groups that are shielded from the sur-

FIG. 2. Elastic energy E of an icosahedral shell expressed in
units of the bending constant �, for the case of zero spontaneous
curvature. The horizontal axis is the Föppl–von Kármán number
�=YS /� with S the surface area of the shell, Y the Young’s modu-
lus, and � the bending constant. For FvK numbers near a critical
value �B around 3000 �arrow� a buckling transition takes place,
with the shell shape transforming from spherical to icosahedral. The
dotted line shows the result of a fit to the LMN theory �see Sec.
III C�. On a linear scale, E�S� has a negative curvature for FvK
numbers significantly above the buckling threshold.

NGUYEN, BRUINSMA, AND GELBART PHYSICAL REVIEW E 72, 051923 �2005�

051923-2



rounding aqueous environment. Next, charged residues fac-
ing the viral exterior are usually negatively charged while
those facing the interior are mostly positively charged. The
result of this “in-out” asymmetry is that a hexagonal sheet of
CCMV capsid proteins in general has a certain preferred cur-
vature determined by the ambient conditions. For the case of
CCMV, this preferred—spontaneous—curvature is strongly
dependent on the concentration of divalent ions. Size control
by spontaneous curvature in CCMV and other T=3 RNA
viruses is associated with conformational switching �20�,
since subunits that participate in twofold contacts must adopt
different conformations depending on whether the contact is
flat or bent. This conformational switch can be a terminal
protein segment that is either ordered or disordered �21�.
Upon removal of this switch, the capsid proteins form mini-
mal sized T=1 shells. Similar conformational switching has
been observed for a T=7 virus �22�. Whether size control of
large viruses can also proceed through spontaneous curva-
ture, involving both spherical and nonspherical shapes, will
be one of the important issues of this paper.

The second effect noted in the CCMV study is related to
the energy difference between pentamers and hexamers. If
the energy cost of a pentamer is comparable to that of a
hexamer, then the minimum energy structure would be ex-
pected to be an icosahedral shell with a radius of order the
inverse of the preferred curvature. If, however, the energy
cost of a pentamer is large compared to that of a hexamer,
then a single long tubular structure with a radius of order the
inverse curvature should have a lower energy than a group of
icosahedral shells with the same total number of subunits,
because the tube has a lower ratio of pentamers over hexam-
ers. We note, in this context, that similar arguments �23� have
been shown to account for the preference of rod versus
sphere shapes of surfactant micellar aggregates, with “cap”
and “body” packing taking the place of pentamers and hex-
amers, respectively.

In continuum elasticity theory, the pentamer-hexamer en-
ergy difference is in fact included in the form of the “core
energy” of the disclination defects that is determined by the
elastic constants, though it should be noted that the �free�
energy difference between pentamer and hexamer oligomers
in actual capsids is likely to involve as well a conformational
switching energy that is not related to the elastic constants of
the shell. However, the first effect—preferential curvature—
has not yet been included in any way whatsoever in the con-
tinuum theory of shells. We will denote the preferred mean
curvature of a shell by C0, so the inverse 1/C0 is the
spontaneous-curvature radius that should determine the size
scale of a capsid in a self-assembly experiment. There are
now two characteristic length scales in the problem: the
spontaneous-curvature radius 1/C0 and the buckling radius
RB defined by the critical value �B=4�RB

2Y /� of the ratio of
stretching to bending energies. Note by the way that, at least
a priori, the buckling radius also could act as a size scale for
capsids, and we will in fact see that that is a real possibility.

The preferred-curvature concept should play an important
role in the spontaneous self-assembly of capsid shells from a
solution of subunits �or oligomers of subunits�. If we view
Fig. 2 as a plot of the energy E�S� versus the �2D� system
size S—since the FvK number is proportional to S—then

E�S� is seen to have no minima, and a negative curvature for
all FvK numbers above 104. For conventional many-body
systems, a negative curvature of the free energy as a function
of system size would signal some form of phase separation.
We will show that negative curvature of E�S� leads to poly-
dispersity of the size distribution in a self-assembly experi-
ment. One might expect that the spontaneous curvature effect
could overcome this negative curvature “problem” and pro-
duce a reasonably monodisperse distribution of capsid sizes
having an area of order 1 /C0

2. It should be noted in this
context that spontaneous curvature is not the only form of
size control in viral assembly. Many large viruses employ a
scaffold structure, i.e., a condensation surface for the sub-
units that may disassemble afterwards, while in other cases,
such as the polyoma/SV40 virus, the genome itself appears
to act as a size gauge.

A more specific aim of the paper involves the application
of the continuum theory to the retroviruses. The capsid shells
of retroviruses are constituted from a rather large numbers of
hexamers and pentamers, of the order of 300, and continuum
theory is expected to be applicable. Retrovirus capsids usu-
ally do not exhibit icosahedral symmetry, but they can be
spherical, such as the murine leukemia virus capsid, or tubu-
lar such as the Mason-Pfizer monkey virus �24�. Particularly
interesting are the capsids of the HIV-1 virus, the majority of
which have a conical shape, while a smaller fraction has a
tubular structure �18,25�. Recent cryoTEM tomography stud-
ies �18� confirm that the HIV-1 conical shells are polydis-
perse, i.e., with a variety of sizes and shapes. Conical HIV-1
capsids will form by self-assembly under in vitro conditions
�26�—in the presence of the viral RNA genome molecules—
indicating that this shell structure really may be a minimum
of the free energy, though a range of other non-spherical
self-assembled structures are encountered as well—apart
from cones—such as spheres, spherocylinders, and curved
sheets. Whether scaffolding plays a role in natural HIV-1
assembly is currently not known.

Although the generalized continuum theory should pro-
vide a description for the self-assembly of icosahedral and
spherocylindrical shells, the HIV-1 conical shells do pose a
serious challenge. In the literature on lipid bilayers �27�, a
similar continuum theory—including the spontaneous curva-
ture effect but excluding the in-plane elasticity—has been
applied with success to describe the shape of closed fluid
surfaces. The resulting shape catalog actually does include,
apart from spheres and tubes, conical-shaped �“pear-
shaped”� shells. However, both the surface area S and the
enclosed volume V of lipid vesicles are essentially fixed �the
latter by osmotic pressure�. Although the surface area of a
capsid can be assumed fixed by the number of capsomers—
the T number—the enclosed volume V of a viral shell is not
a fixed quantity. Capsid shells are permeable to water mol-
ecules and to small salt ions, so the osmotic pressure differ-
ence between the exterior and interior of an empty viral shell
must be zero. Without the fixed-volume constraint, pear-
shaped vesicles would not be stable. The reason is that the
curvature of a cone changes continuously along the cone
axis. If the spatial average of the curvature of the cone is set
equal to the preferred curvature C0 of the proteins, then a
cylinder still would have a lower bending energy since the

ELASTICITY THEORY AND SHAPE TRANSITIONS OF… PHYSICAL REVIEW E 72, 051923 �2005�

051923-3



curvature of a cylinder is constant and can be equated every-
where to C0. If this argument hold true as well for shells that
support elastic stress, then continuum theory would not allow
for the spontaneous self-assembly of empty, conical HIV-1
shells.

We will show that the shape of elastic shells with pre-
ferred curvature is determined by the competition of the
spontaneous curvature effect with two different physical
mechanisms. The first is the effective pair potential between
the fivefold sites. This pair potential is logarithmic over a
large range of FvK numbers and is responsible for the nega-
tive curvature of the E�S� plot of Fig. 2. The negative curva-
ture of the pair potential has a tendency to drive a decompo-
sition of the 12 fivefold sites, thereby favoring nonspherical
shell shapes. The second mechanism, which will be termed
the misfit energy, is the deformation energy cost of embed-
ding a fivefold disclination site into the curved “background”
surface of the various competing structures.

The key physical results that result from this competition
are as follows.

�i� If the dimensionless spontaneous curvature �=C0S1/2

is small compared to unity, then the icosahedral shell struc-
ture has, for any FvK number �, a lower elastic energy than
that of either the cone or the spherocylinder. For large FvK
numbers, stability of the icosahedral shell is provided by its
low misfit energy, which overcomes the negative-curvature
effect mentioned above.

�ii� Self-assembly of icosahedral shells with a well-
defined size determined by the spontaneous curvature radius
requires the FvK number � to be below the buckling thresh-
old �B. Self-assembly of monodisperse shells above the
buckling threshold evidently requires a scaffold-type mecha-
nism.

�iii� For FvK numbers near or below the buckling thresh-
old, and for spontaneous curvatures C0 of order 1 /R, there is
a substantial portion of the phase diagram where the energies
of the sphere, cone, and tube approach each other to within
0.5% of the total elastic energy. We will argue that this en-
ergy difference is of the order of the thermal energy kBT and
present evidence from the literature on in vitro self-assembly
for the existence of extensive shape diversity in the transition
region between sphere and sphero-cylinder. The observations
on HIV-1 self-assembly would indicate that its capsid forma-
tion is naturally located in precisely this section of the phase
diagram. We will, however, discuss certain difficulties with
this interpretation in Sec. V.

�iv� For FvK numbers that are significantly above the
buckling threshold, and for C0R somewhat larger than unity,
there is a weakly “first-order” transition from an icosahedral
to a tubular shell, while for FvK numbers well below the
transition is strongly first order.

The paper is organized as follows. In Sec. II, we general-
ize the CK construction to allow for a unified isometric de-
scription of icosahedral, spherocylindrical, and conical struc-
tures. In Sec. III, we present a simple analytical description
of nonicosahedral shells in which we feature the dependence
of disclination energies on the curvature of the hexagonal
lattice in which they are embedded. In Sec. IV we use nu-
merical energy minimization to determine the “shape” phase
diagram shown in Fig. 13, at the heart of which is a region of

intermediate capsid size and spontaneous curvature where a
number of different shapes, including conical, are found to
have comparable energies. The implications of our results for
capsid assembly in general and HIV-1 in particular are dis-
cussed in the concluding Sec. V.

II. NONICOSAHEDRAL ISOMETRIC SHELLS

Here we generalize the CK construction in order to deter-
mine the location of the 12 fivefold sites for nonicosahedral
isometric shells. These isometric structures will form a start-
ing platform for the analytical and numerical studies of Secs.
III and IV.

The folding template for the classical CK construction of
icosahedral shells was already shown in Fig. 1�a�. The vector

A� determining the folding template is a hexagonal lattice
vector:

A� = ha�1 + ka�2, �2.1�

with h and k a pair of non-negative integers and a�1 and a�2
basis vectors of the hexagonal lattice �see Fig. 1�b��. A hex-
americ capsomer is associated with each lattice site. After
folding the template into an icosahedron �see Fig. 1�c��, the
final number N�h ,k� of hexamers and pentamers equals

N�h,k� = 10�h2 + k2 + hk� + 2, �2.2�

which is usually written as N�h ,k�=10T�h ,k�+2 with
T�h ,k�=h2+k2+hk.

The construction of an isometric spherocylinder starts in
the same fashion. The folding template for a spherocylinder
is shown in Fig. 3�a�.

First, we define a lattice vector A� =ha�1+ka�2 for the fold-
ing of the two �semi�icosahedral capping sections of the tem-

FIG. 3. �Color online� Construction of an isometric spherocyl-
inder. �a� Folding template for an isometric spherocylinder. �b�
The basis vectors of the template are A� =n�ha�1+ka�2� and B�

=m�hb�1+kb�2�. They are perpendicular to another with �h ,k� and
�n ,m� any two pairs of non-negative integers with m�n. For
m=n, the spherocylinder reduces to an icosahedron. �c� Isometric
spherocylinder with n=2, m=0, and h=3, k=0.
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plate. In the simplest case, the two caps are displaced along a

direction perpendicular to A� by the lattice vector B� , which is
defined by the location of the pentamer site of the tip of one
of the caps of the spherocylinder starting from one of the
pentamers on the base of the opposite cap �see Fig. 3�a��. All
lines shown in the folding template of Fig. 3 must be lattice

vectors as well. If we set B� = pa�1+qa�2, then A� is perpendicu-

lar to B� if p /q=−�h+2k� / �2h+k�. This condition is satisfied

by choosing B� =hb�1+kb�2, with

b�1 = − a�1 + 2a�2, �2.3a�

b�2 = − 2a�1 + a�2. �2.3b�

As shown in Fig. 3�b�, the b�1,2 vectors are perpendicular to

the a�1,2 lattice basis vectors. In fact, if we multiply A�

=ha�1+ka�2 by an arbitrary integer n and B� by an integer m,

then B� remains perpendicular to A� . The folding template of a
spherocylinder is thus defined by two pairs of basis vectors

��a�1 ,a�2� and �b�1 ,b�2�� and two pairs of integer ��h ,k� and
�m ,n��:

A� = n�ha�1 + ka�2� , �2.4a�

B� = m�hb�1 + kb�2� . �2.4b�

The total number of capsomers of a spherocylinder defined
by the two pairs �h ,k� and �n ,m� is

N�h,k�n,m� = 10mn�h2 + k2 + hk� + 2. �2.5�

For the case of the icosahedron, with m=n, this reduces to
Eq. �2.2�. This construction is not the most general case,

since we could have chosen the lattice vector B� to lie along a

direction that is not perpendicular to A� , which would have
produced a helical spherocylinder.

In order to construct an isometric cone, we start from the
isometric spherocylinder and move one or more pentamers
from the top end cap to the bottom end cap. We will restrict
ourselves to the “5-7” case with the smaller cap containing
five pentamers and the larger cap containing seven pentam-
ers. The corresponding folding template is shown in Fig.
4�a�.

The top and bottom caps can be considered as two sec-
tions of an isometric icosahedron with T numbers Ts and Tl

and folding lattice vectors A� and B� . All directions shown in
the folding template must again be lattice vectors. Let the T
number of the top cap be T�mh ,mk� and that of the bottom
cap T�nh ,nk�. The corresponding lattice vectors are, respec-
tively,

A� = n�ha�1 + ka�2� ,

B� = m�ha�1 + ka�2� . �2.6�

The size ratio of the two caps is the size ratio of the lengths
of these two vectors, i.e., m /n, which can be any rational
number greater than or equal to 1. Varying this size ratio

corresponds to varying the distance between the top and bot-
tom caps. The total number of capsomers equals

N�h,k�m,n� = 10�2m2 − n2��h2 + k2 + hk� + 2. �2.7�

III. ELASTICITY THEORY OF CAPSIDS

The theory of elasticity assigns to thin elastic shells an
energy H that can be written as the sum of an in-plane
stretching energy HS and an out-of-plane bending energy HB
The stretching energy of an elastic sheet of hexagonal sym-
metry is given by

HS =
1

2
� dS�2�uij

2 + �uii
2� . �3.1�

Here, uij is the strain tensor for displacement within the
plane of the shell while � and � are two phenomenological
constants, known as the Lamé coefficients, which are related
to the area modulus by B=�+2� and to the �2D� Young’s
modulus by Y =4���+�� / �2�+��. The hexagonal sheet is
assumed to be closed, which by Euler’s theorem requires the
introduction of twelve sites having fivefold symmetry, the
disclination defects. Recall that, within the continuum theory,
disclination defects play the role of the 12 pentamers of the
CK construction discussed in Sec. II.

The out-of-plane bending energy of an elastic shell is
given by

FIG. 4. Construction of an isometric cone. �a� Folding template

of an isometric cone. The two lattice vectors A� =n�ha�1+ka�2� and

B� =m�ha�1+ka�2� are parallel, with �h ,k� and �m ,n� any two pairs of
non-negative integers with m�n. �b� Isometric cone with h=1,
k=0, m=3, and n=2.
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HB =
1

2
� dS���H − C0�2 + 2�GK� . �3.2�

Here � is the Helfrich bending constant, H=1/R1+1/R2 is
the mean curvature, with R1 and R2 the principal radii of
curvature, and C0 is the preferred or spontaneous curvature.
In the second term, K=1/R1R2 is the Gaussian curvature
with �G the Gaussian bending constant. Within the general-
ized continuum elasticity theory, a viral shell is thus charac-
terized by five phenomenological constants: the two Lamé
coefficients �� and ��, the two bending moduli �� and �G�,
and the preferred curvature �C0�. We will not assume any a
priori restrictions on these phenomenological constants until
the concluding section, where we will discuss typical ranges
as obtained from biophysical and numerical studies.

The minimization of the elastic energy given by Eqs. �3.1�
and �3.2� leads to a set of coupled nonlinear equations, de-
rived by Föppl and von Kármán, whose solution in general
requires numerical methods. In the remainder of this section
we will restrict ourselves to certain limiting cases where it is
possible to apply analytical methods.

A. The Helfrich limit

In the limit of �=0 �and hence of vanishing Y and of
�=YS /�� the elastic energy of the fivefold disclinations
plays no role. We will assume that the Lame coefficient � is
infinite �and hence the area modulus B� so the surface area is
fixed. The bending energy HB, Eq. �3.2�, then has to be mini-
mized for fixed total area S. In this limiting case the capsid
surface is effectively fluid and, as noted in the Introduction,
we can use in this regime the results of the Helfrich theory of
lipid bilayers �26� provided we do not maintain the volume
as a fixed quantity.

The bending energy Es�R� for a sphere of radius R, in
units of the bending modulus � is—according to Eq. �3.2�—a
quadratic function of the preferred curvature C0:

Es�R�/� = D�0� − 8�C0R + 2�C0
2R2, �3.3�

with D�0�=4��2+�G /��. Note that the bending energy is
minimized by Es /�=4��G /� when the mean curvature 2/R
equals C0. The bending energy of a spherocylinder with ra-
dius 	 and height h—see Fig. 7�b�—is given by

Esc�	,h�/� = Es�	�/� + ��h

	
� − 2�C0h + �h	C0

2. �3.4�

This energy of the spherocylinder must be minimized with
respect to the aspect ratio h /	 while maintaining a fixed area
S=4�	2+2�	h. For a long spherocylinder, the minimum en-
ergy equals Esc /�=2�+4��G /� with a cylinder curvature
1/	 equal to C0.

By comparing the energy of a sphere with that of a
spherocylinder of the same area S, the energy of the sphere is
seen to be less than that of the spherocylinder for C0R less
than 3 while for C0R greater than 3, the spherocylinder has a
lower energy. Linear stability analysis �28� shows that the
sphere is unstable against small deformations with the sym-
metry of a spherical harmonic YL

M once C0R exceeds
L�L+1�, with L
2. The sphere thus remains a local energy

minimum up to C0R equal to 6, where it becomes unstable
against an infinitesimal prolate deformation. It follows that
we should expect a first-order sphere-to-spherocylinder
shape transition for C0R	3.

We also must compare the bending energy 2��+4��G of
a single long spherocylinder, with curvature 1/	 equal to C0,
to that of a certain number M of spheres with the same total
area. We now can set the mean curvature 2/R of the spheres
equal to the preferred curvature C0 so the total bending en-
ergy of the spheres equals 4��GM �for large M�. It follows
that—for any value of C0—a long spherocylinder is stable
against break up into spheres as long as the Gauss curvature
constant is positive or, more precisely, as long as
�G�� /2�M −1� with M a large number.

B. The Lobkovsky limit

We now turn to the limit �=� and �=�, and hence infi-
nite area and Young’s moduli. The sheet is now inextensible,
which corresponds to the isometric regime discussed in the
previous section where we showed how to construct faceted
isometric shells. We would now like to compare the elastic
energy of different isometric shells. Because the curvature of
an isometric shell is infinite along each of the ridges connect-
ing adjacent facets of an isometric shell, the bending energy
of an isometric shell is infinite if Y is infinite. In the limit of
large but finite Y, and hence of finite �, the elastic energy
E�L� of a ridge of length L that connects two facets whose
normals make an angle 2� with respect to one another was
obtained �for zero spontaneous curvature� by Lobkovsky
�29� by the use of scaling arguments:

E�L�/�  �7/3�YL2

�
�1/6

. �3.5�

The dimensionless ratio ��L�=YL2 /� of stretching and bend-
ing energies can be viewed here as a FvK number, which
must be large compared to 1 in order for Eq. �3.5� to hold.
LMN found that Eq. �3.5� indeed gives the elastic energy of
the edge of an icosahedron, provided � exceeds a number of
the order of 109. Since the transverse curvature 1/R of an
edge scales as ��L�1/6 /L, the contribution to the bending en-
ergy coming from the spontaneous curvature term can be
neglected for C0L���L�1/6, i.e., again for sufficiently large
FvK numbers.

In order to compare the elastic energies of different shell
shapes in this limit, we computed an energy index E defined
by

E  

i,j

�i,j
7/3Li,j

1/3 �3.6�

for different isometric shells of the same area. The summa-
tion extends over the ridges connecting pairs of fivefold ver-
tices of an isometric shell. Note that Eq. �3.6� can be viewed
as the effective interaction energy between 12 particles re-
stricted to a closed surface interacting via a pair potential that
increases as the 1/3 power of their separation.

Figure 5�a� shows the E index of an isometric spherocyl-
inder as a function of the ratio m /n of the isometric construc-
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tion. The m /n ratio, which equals 1 for an icosahedron, is
about 2.5h /	 for a long spherocylinder. The vertical axis
gives the E index, divided by the value of E for an icosahe-
dron.

The E index at first increases as a function of m /n. The
reason is that when we increase the aspect ratio, at fixed total
area, we increase the total length 
ijLij of the ridges of an
isometric spherocylinder shell as compared to that of an
icosahedral shell. The index develops a maximum but it then
decreases for increasing aspect ratio. This decrease is due to
the fact that for larger aspect ratios the 12 vertices are
densely clustered on the two caps. By decreasing the cap
size, we lower the energy of the ten short ridges on each of
the two caps much more than we raise the energy of the ten
long ridges connecting the caps because of the large negative
curvature of the Li,j

1/3 pair potential for small L values. The
energy reaches a minimum when the aspect ratio h /	 of the
spherocylinder is of order 10. At this minimum, the energy of
the spherocylinder is very nearly degenerate with that of the
icosahedron but the energy of the spherocylinder never drops
below that of the icosahedron. Inclusion of spontaneous cur-
vature, which favors cylindrical structures, should thus lead
to a first-order, i.e., discontinuous, transition between the
icosahedron and a spherocylinder with an aspect ratio h /	 of
order 10, i.e., near the minimum of Fig. 5�a�. It is question-
able though whether the scaling description Eq. �3.6� can be
extended to spherocylinders with such very large aspect ra-
tios. The angle between two neighboring ridges joining at a
vertex is small in this regime, causing overlap of the regions
of stress along the ridge near a vertex.

Turning to cones, Fig. 5�b� shows the normalized E index
of an isometric 5-7 cone now as a function of the m /n ratio
of the isometric construction, which is approximately the ra-
tio of the radii of the two caps. Note that the elastic energy of
the cone is systematically higher energy than that of the

spherocylinder so conelike structures are not expected to be
stable in the isometric limit.

C. Generalized LMN theory

Consider the “self-energy” of a single fivefold disclination
defect at the center of a circular sheet of hexagonal material
with radius R, a problem that was studied by Seung and
Nelson �SN� �30�. If the sheet is forced to remain flat, then
the stretching energy of a disclination, computed from Eq.
�3.1�, diverges as the area of the sheet: E�R��AYR2 with
A=� /288. If, on the other hand, the sheet is allowed to
buckle out of the plane, then it can reduce the elastic energy
by forming a cone with only a central core region that is
flattened out in order to avoid a divergence of the bending
energy. The bending energy of the cone section can be easily
computed from Eq. �3.2� and is equal to E�R�
�B� ln�R /RB� with B equal to ��11/30� and with RB the
buckling radius mentioned in the Introduction. The flattened
core has a radius of the order of RB and an energy of order
EC�AYRB

2 . These two results can be combined into a single
variational expression for the energy of a disclination in a
lattice of size R ��RB�:

E�R� = AYRB
2 + B� ln� R

RB
� . �3.7�

Minimizing Eq. �3.7� with respect to RB gives a buckling
radius RB	��B /2A�� /Y, allowing Eq. �3.7� for the disclina-
tion energy E�R� to be written in terms of B and RB instead
of B, RB, and A. More explicitly, we have E�R�RB�
= �B� /2��1+2 ln�R /RB��, from which it is clear that the dis-
clination energy increases �decreases� with decreasing �in-
creasing� RB, the size at which the sheet buckles. In terms of
�=YS /�=Y4�R2 /�, this corresponds to a critical FvK num-

FIG. 5. Elastic energy of isometric shells as computed from the Lobkovsky scaling relation Eq. �3.6�. The energy is normalized with
respect to that of an icosahedral �S� shell of the same area. �a� Elastic energy of a spherocylinder �SC� as a function of the ratio m /n of the
isometric construction. This ratio is about 2.5 times the aspect ratio h /	 for a long spherocylinder. �b� Elastic energy of an isometric 5-7 cone
�C� as a function of the m /n ratio of the isometric construction. The m /n ratio is approximately the ratio �Rl /Rs� of the radii of the larger
and smaller caps of the cone.
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ber �B equal to 2��B /a� or about 660. A more detailed
calculation—for a single disclination in a planar lattice, treat-
ing the join between flat and cone portions more carefully
via a direct numerical evalutation of the lattice energy—
gives a larger value, about 1935 �LMN, SN�.

A simple and appealing ansatz for the elastic energy of a
spherical capsid is to add the energy of 12 such disclinations
to a background elastic cost for forming a spherical capsid
from an equivalent area of planar lattice. Using numerical
minimization of the energy, LMN found �8� that this proce-
dure works well for icosahedral capsids up to quite high FvK
numbers, provided one treats B and �B �and hence
A=2�B /�B� as fitting parameters. B had to be increased only
slightly �to a value of 1.30 from the approximate value
��11/30�	1.15� whereas �B had to be reduced significantly
�from about 1935 to about 1633�. This means, according to
our discussion following Eq. �3.7�, that the elastic energy of
a disclination embedded in a spherical shell is greater than
the elastic energy of a disclination embedded in an asymp-
totically flat sheet. LMN found that, at the disclination buck-
ling transition, the global shape of the capsid undergoes a
transition from spherical to polyhedral �see Fig. 2�. Note that
in this approach disclinations effectively interact via a loga-
rithmic pair potential—above the buckling threshold—which
again has a negative curvature, as in the Lobkovsky regime.

In order to include the effect of spontaneous curvature in
the approach of Nelson and co-workers, we express it as a
dimensionless number �=C0S1/2, which will form a second
important dimensionless variable in addition to the FvK
number �. For small capsids, with � less than �B, the total
continuum elastic energy E0�� ,�� of a spherical shell with
spontaneous curvature equals

E0��,��/� � 6B
�

�B
+ D��� �� � �B� . �3.8�

The first term is the elastic stretching energy of 12 “unbuck-
led” disclinations. The background elastic energy D��� is the
quadratic function of spontaneous curvature given by Eq.
�3.3�, expressed here in terms of the dimensionless �:

D��� = D�0� − 4��� +
1

2
�2, �3.9�

with D�0�=4��2+�G /��. This is just the bending energy, in
units of �, needed to form a defect-free spherical surface
from a planar one of the the same area; Eq. �3.8� adds to this
quantity the strain energies associated with the 12 unbuckled
�flat� defects that comprise this area.

For capsids with � greater than �B, the elastic energy
E0�� ,�� equals

E0��,�� = 6B�1 + ln
�

�B
� + C��,�� + D̂��,�� �� � �B� .

�3.10�

The first term equals 12 times our earlier sum—see Eq. �3.7�
and the discussion following it—of the elastic stretching en-
ergy of the flat core section of a disclination plus a bending
energy for the curved conical section. The second term,

C�� ,��, is the contribution of the spontaneous curvature to
the bending energy of the conical sections of these disclina-
tions:

C��,�� = 6B−
2�

��
��F��� −��B

�
� +

�2

4�
�F��� −

�B

�
�� .

�3.11�

Here

F��� =
1 − �B/��1 − 3 cos �1/tan �1�

3 cos �1/tan �1
,

with �1 equal to �half of� the largest cone angle consistent
with forming a truncated cone from a hexagonal lattice, i.e.,
the M =1 case of the truncated cones considered explicitly at
the start of the following section—see Eq. �3.13�;
�1=sin−1�5/6�. Note that C�� ,�� is a quadratic function of
the spontaneous curvature that vanishes when the cone area
goes to zero at � equal to �B. Finally, the third term of Eq.

�3.10�, D̂�� ,��, accounts for both the bending and spontane-
ous curvature energies of the core sections of the disclina-
tions. This term depends on the ratio �B /� as well as on the
spontaneous curvature �:

D̂��,�� = D�0� − 4�����B

�
+

1

2
�2�B

�
. �3.12�

Note that for �=�B, D̂�� ,�� reduces to D��� �see Eq. �3.9��,
since in that case there are no buckled regions and the whole
area of the capsid is associated with flat cores that have been
bent into a sphere. Otherwise, i.e., for ���B, the cores com-
prise only part of this area �specifically the fraction �B /��
and the “background” bending and spontaneous curvature

energies are given by D̂�� ,�� instead of D���.
In Fig. 6 we show the dependence of the elastic energy

E��� of an icosahedral shell on the FvK number � for differ-
ent values of the spontaneous curvature. The spontaneous
curvature—rather than the � parameter—was kept fixed here
in order to display the dependence of the elastic energy on
system size S.

If the spontaneous curvature is small compared to
	0.1/RB, with RB the buckling radius, then the E��� curve
deviates little from the case of zero spontaneous curvature
�solid line� at least for FvK numbers less than 106. However,
if C0RB equals 0.2 �dashed line�, then the interval of negative
curvature of the E��� curve has substantially diminished. If
C0RB equals 0.8 �dotted line�, then the curvature of E��� is
positive everywhere, while E��� exhibits a single, well-
defined minimum for capsid radii of the order of 1 /C0.

D. Nonicosahedral shapes

We now compare the elastic energy E0�� ,�� of an icosa-
hedral capsid with that of conical and spherocylindrical
caspids. In order to describe a conelike capsid, we first ap-
proximate a conical shell by a closed surface consisting of
two spherical cap portions connected by a smooth cone with
an aperture angle 2� �see Fig. 7�, and then add the disclina-
tions.
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The curvature radius of the larger �top� cap will be de-
noted by Rl and the radius of the smaller �bottom� cap by Rs.
We now assign different numbers of disclinations to the two
caps: the top cap contains 12−M disclinations and the bot-
tom cap M disclinations. The special M =6 case corresponds
to the spherocylinder. The value of M actually determines the
aperture angle of the cone in Fig. 7�a�. The reason is that a
cone of aperture angle � can be constructed from a flat cir-
cular sheet by cutting out a wedge with an angle equal to
2��1−sin �� and then closing the cut. On the other, introduc-
ing a single fivefold disclination into a sheet corresponds to
removing a wedge with an angle of 2� /6 from the sheet, and
then closing the sheet, which produces a cone with an aper-
ture angle of arcsin 1/6. The aperture angle of the cone is, in
general, quantized by the number M of disclinations of the
bottom cap,

sin �M = 1 −
M

6
. �3.13�

A conical capsid is thus characterized by two FvK numbers,
�l and �s, for the larger and smaller, respectively, of the two
caps: �l,s=YSl,s /� with Sl= ��12−M� /12�4�Rl

2 and Ss

= �M /12�4�Rs
2. The size of the conical section is fixed once

we have specified the two FvK numbers plus the aperture
angle.

The elastic energy EM��l ,�s ,�� of the capsid is now ap-
proximated as the sum of three terms: the two elastic ener-
gies of the caps, computed as the energy E0 of an icosahedral
shell but scaled by the appropriate number of disclinations,
plus the elastic energy of the connecting cone section:

EM��l,�s,��/� =
12 − M

12
E0��l,�� +

M

12
E0��s,��

+ DM��l,�s,�� . �3.14�

The energy of the cone section is the sum of a bending en-
ergy and a spontaneous curvature term that is similar to that
of cone section for single disclinations, given by Eq. �3.11�:

DM��l,�s,�� = � cos �M

2 tan �M
�� ln

�l

�s
− 2������l

�
−��s

�
�

+
�2

4
��l

�
−

�s

�
�� . �3.15�

Here, � is the FvK number of a sphere having the same area
as the conical capsid, defined again as YS /�. The special
case M =6, the spherocylinder �see Fig. 7�b��, is more con-
veniently expressed as

D6��c,�,h/	� = h/	� −����c

�
�� +

1

4
��c

�
��2�

�3.16�

with �c the FvK number of the two caps and with h /	 the
ratio of the height and radius of the cylindrical section.

We now can plot a shape phase diagram as a function of
the parameters � and �, comparing different shell shapes
with the same total area. For a given M value the size ratio
�l /�s of the top and bottom caps is treated as a variational
quantity whose value is determined by minimization of the

FIG. 6. Elastic energy of an icosahedral shell as a function of
the Föppl–von Kármán number � for different values of the spon-
taneous curvature C0 as predicted by Eqs. �3.8�–�3.12�. Solid line,
C0=0. Above the buckling threshold, the energy has a negative
second derivative with respect to area. In this case, the capsid size
distribution would be highly polydisperse in a self-assembly experi-
ment. Dashed line, C0RB=0.2. The region of negative second de-
rivative is reduced to a finite interval. Dotted line, C0RB=0.8. The
energy has a positive second derivative with respect to area. In a
self-assembly experiment, capsids with Fvk numbers near this mini-
mum would dominate.

FIG. 7. �a� Construction of a smooth conical shell by joining a
larger sphere of radius Rl to a smaller sphere of radius Rs by a cone
that is cotangent to the two spheres. The cone aperture angle is 2�.
The parts of the spheres inside the cone are then removed leaving
two spherical cap portions. Note that the surface has a discontinuity
in the curvature along the two matching circles. �b� Spherocylinder
of height h and cylinder radius 	.
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energy at fixed area. The resulting �-� shape phase diagram
is quite simple, as shown in Fig. 8.

For small FvK numbers ���102�, we encounter a first-
order transition from sphere to spherocylinder as a function
of spontaneous curvature for � near 10.2. A transition point
of � near 10.2 translates to a value for C0R near 3, close to
that of the Helfrich limit. The aspect ratio of 5.8 for the
spherocylinder at the transition point is significantly smaller
than that appearing in the Lobkovsky limit �see Fig. 5�a��.
For larger FvK numbers ��	103�, the transition becomes
less dependent on the value of the spontaneous curvature
while the aspect ratio slightly decreases. In fact, a transition
from sphere to spherocylinder takes place even for zero
spontaneous curvature. The associated critical FvK number
is close to the buckling threshold �arrow�. If the elastic en-
ergy of the cone is compared with that of either the sphere or
the spherocylinder, then—as for the Helfrich and Lobkovsky
limits—one again finds that conical shells never should be
stable. Note that the locus of points for which C0RB—rather
than C0R—is fixed consists of a family of parabolas in the
�-� plane.

If the structural phase diagram of Fig. 8 really were to
apply to viral capsids, then this would lead to a rather star-
tling prediction: since the FvK number increases in propor-
tion to the capsid area S, large spherical capsids would be
intrinsically unstable against the formation of spherocylin-

ders. If one assumes that the values of the Young’s modulus
and the bending constant are determined by the basic inter-
actions between protein subunits, and that they are therefore
similar for different viruses, then this would imply that there
should be a maximum size for spherical capsids. Also, the
stability of self-assembled conical shells of HIV-I capsid pro-
teins indeed could not be understood within the context of
continuum elasticity theory.

There is however reason to be cautious about these con-
clusions. First, recall �Fig. 5� that in the Lobkovsky limit of
large FvK numbers, spherical capsids were stable in the ab-
sence of spontaneous curvature—though only barely so—
which is in disagreement with Fig. 8. Next, recall that when
the theoretical E�S� curve for an icosahedral shell is com-
pared with the results of numerical energy minimizations it
was found necessary to treat the constants B and �B as fitting
parameters and that the energy of a disclination imbedded in
a curved surface was found to exceed that of a disclination
imbedded in an �initially� flat sheet. It turns out �see Sec. IV�
that this misfit elastic energy depends on the shape of the
shell. The conical sections of the five disclinations along the
edge of one of the caps of a spherocylinder are in fact more
deformed than the conical sections of an icosahedral shell,
which could alter the buckling threshold parameter �B. The
phase diagram Fig. 8, and in particular the presence of a
sphere-to-spherocylinder transition for � equal to zero, is
sensitively dependent on the assumed value of the buckling
threshold value �B.

Finally, our construction of the spherocylindrical shell in-
volved a discontinuity of the curvature along the matching
circles between caps and body of the shell �see Fig. 7�. A
curvature discontinuity of an elastic shell is possible only if
an external torque is applied to the shell surface. In the ab-
sence of such a torque, we must expect a spherocylinder
shell to warp in some way to remove the discontinuity and,
indeed, this is what we find below in our numerical evalua-
tions of the shell energies, e.g., the spherocylinders develop a
“waist” �and hence a region of negative Gaussian curvature�.

IV. NUMERICAL ENERGY MINIMIZATION

In order to verify the analytical results of Sec. III, we
carried out a numerical minimization of the elastic energy H
of closed shells. Following LMN, the shell surface was dis-
cretized by a closed triangular net of fixed connectivity. The
sites of the net were sixfold coordinated, except for the 12
sites with fivefold coordination that are required by Euler’s
theorem. The location of the fivefold sites was determined by
the demand that, in the isometric limit of large FvK numbers,
their position coincided with the generalized CK construc-
tions of Sec. II.

The in-plane elastic energy HS of the net is described as
the pairwise sum of harmonic interaction potential between
the nearest neighbors i and j of the net:

HS =
�

2

ij

��r�i − r� j� − a�2. �4.1�

Here, a is the equilibrium spacing of the harmonic potential
and � is the spring constant, related to the 2D Young’s modu-

FIG. 8. Analytical shape phase diagram. The vertical axis is the
Föppl–von Kármán number �=YS /�, with S the area of the shell.
The horizontal axis is �=C0S1/2, the spontaneous curvature C0 in
dimensionless units. Solid line, transition from a spherical shell to a
spherocylindrical shell. The transition is discontinuous, with the
aspect ratio of the spherocylinder along the transition line ranging
from 4.6 to 5.8. Conical shells with M �6 do not arise. For small
FvK numbers, the transition takes place close to the critical spon-
taneous curvature of the Helfrich theory �see Sec. III A�. For small
values of �, the transition takes place, as a function of �, just below
the numerically computed buckling threshold of the icosahedron of
about 3269 �see Sec. IV�.
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lus of the shell by Y =2� /�3. This equilibrium spacing
should not be viewed here as some typical spacing between
the subunits of a capsid shell but rather as a discretization
length for the numerical minimization of the continuum elas-
tic energy Eqs. �3.1� and �3.2�. Any characteristic distance
scale of the continuum theory, such as the buckling radius or
the spontaneous curvature radius, thus should be large com-
pared to a.

The out-of-plane bending energy HB of the net is given as
a pairwise interaction between the normal directions of all
adjacent triangles I and J of the triangular net. In the absence
of spontaneous curvature, the bending energy is given by

HB =
k

2

IJ

�n̂I − n̂J�2. �4.2a�

Here, n̂I is a unit normal perpendicular to the surface of
triangle I. The energy scale k for bending the link between
two triangles is related to the Helfrich modulus by
�=�3k /2. In terms of the dihedral angle �IJ between the
normals n̂I and n̂J of the two adjacent triangles I and J, we
can write Eq. �4.2� as

HB = k

IJ

�1 − cos��IJ − �0�� . �4.2b�

We have included in Eq. �4.2b� the effect of a spontaneous
curvature, i.e., the bending energy of two adjacent triangles
is minimized by setting the dihedral angle �IJ equal to a
preferred curvature angle �0. If one expands the argument of
Eq. �4.2b� to second order in �IJ−�0 and evaluates the sum
for an infinite cylinder with axis running along a crystal di-
rections and radius large compared to a, one obtain an ex-
pression of the same form as the Helfrich bending energy
�Eq. �3.2�� with a spontaneous curvature C0 equal to
k�0 /�a=2�0 /�3a.

The elastic energy H was minimized by the conjugate
gradient method for closed nets with a large number of sites
�typically 30 000�. As our starting state, we used the isomet-
ric shells of the generalized CK construction described in
Sec. II. The reference structure was an icosahedral shell with
T=552 �i.e., h=55, k=0� having 10�T−1�+12 or 30 252 sites
�see Eq. �2.2��. The �minimized� elastic energy of that shell
was already shown in Fig. 2 as a function of the FvK number
for the case of zero spontaneous curvature. The surface area
S in the FvK number �=YS /� is taken here as the area of the
unstretched isometric starting structure, and not the actual
area. The best fit between the numerical results and Eq. �3.7�
was obtained for B	1.27 and a critical FvK number �B for
the buckling transition of about 3269 �for reasons that are not
clear, this is twice the value reported by LMN of about
1633�.

In order to compare the elastic energies of icosahedral,
spherocylindrical, and conical shells, one must generate nets
with the same area �number of sites�. However, we saw that
the CK construction restricts the number of sites to certain
magic numbers so it is, in general, not possible to obtain two
nets of different symmetry having exactly the same number
of sites. As a first example of a spherocylindrical shell, we
used an isometric net defined by m=80, n=38, h=1, and

k=0 �see Sec. II�. The corresponding number of sites is
30 402, according to Eq. �2.5�, so the variation in the shell
area �S /S, as compared with the T=552 icosahedral shell is
about 0.5%. Above the buckling threshold, the corresponding
overestimate of the energy is of order �E /E
	�1/ ln�� /�B���S /S using Eq. �3.10�, so the systematic error
in comparing energies of competing structures is of the order
of 0.5%. Typical results of the energy minimization for zero
spontaneous curvature are shown in Fig. 9, where we com-
pare the elastic energy of the m=80, n=38, h=1, and k=0
spherocylinder �thick line� with that of the �55, 0� icosahe-
dron �thin line�.

For low FvK numbers, the shell shape is a prolate ellip-
soid, which transforms into a dumbbell shape for FvK num-
bers of the order of 1000. Dumbbell shapes are in fact en-
countered in the shape catalog of liquid vesicles �26� but
there again only if one imposes a fixed-volume constraint.
For the present case we note that the dumbbell shape avoids
the curvature discontinuity discussed at the end of Sec. III. A
buckling transition of the spherical caps takes place at
�B	2967. For very large FvK numbers, above 106, we re-
cover the isometric spherocylinder.

The energy of the spherocylindrical shell always exceeds
that of the icosahedral shell, though over a substantial range
of FvK numbers the energy difference �E is as low as the
“background” energy difference between a fluid sphere and
spherocylinder of the same area �and modest aspect ratio�,
i.e., it is of the order of the bending constant �. Though
small, this energy difference still significantly exceeds the
estimated systematic error �E /�. For instance, for �	104,
�E /� is of order 0.015, while �E /� is of order 2.0.

If we treat the B and �B constants as fitting parameters,
we can obtain a surprisingly good fit between the theory �see
Eq. �3.14�, dotted line� and our numerical results, except for
low FvK numbers. The fitted buckling threshold �B	2927 is

FIG. 9. Elastic energy E of a spherocylindrical shell with
m=80, n=38, h=1, and k=0 �thick line� and an icosahedral shell
with h=55 and k=0 �thin line� for the case of zero spontaneous
curvature �in units of the bending constant �� as a function of the
FvK number �=YS /�, with S the area of the shell Y the Young’s
modulus and � the bending constant. The central portion of the
spherocylinder develops a negative Gauss curvature �“waistlike re-
gion”� for � values around 1000, followed by a buckling transition
for � near �B	2967 that is smaller than the buckling threshold of a
spherical shell �	3269�. The dotted line shows the result of a fit to
Eq. �3.14� with adjusted values for B and �B �see text�.
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significantly below the buckling threshold of an icosahedron,
though the fitted value of B remains in the range 1.27–1.30.
Since the self-energy is of the form of B�1+ln�� /�B��, this
indicates that the misfit energy of a disclination that is part of
a spherocylinder is larger than the misfit energy of a discli-
nation that is part of a spherical surface with the same FvK
number.

The reason for the deviation between numerical energy
minimization and the theoretical fit in Fig. 9 for very low
FvK numbers is that the bending energy dominates in that
regime over the in-plane elastic energy. As a result, the
spherocylinder is deformed toward a spherical shape since
the sphere—but not the spherocylinder—is a minimum of
the bending energy in the absence of spontaneous curvature.

We repeated this calculation for different values of m and
n, while maintaining a fixed area within 0.5%. For general m
and n, the elastic energy of the spherocylinder always ex-
ceeds that of the sphere, as in Fig. 9, but in contrast to the
analytical phase diagram of Fig. 8. The stabilization of the
sphere is precisely because of the increased disclination mis-
fit energy of the spherocylinder, which apparently must be
considered as an important physical ingredient in the shape
phase diagram of shells.

We have obtained the dependence of the buckling thresh-
old �B�m ,n� on the aspect ratio of the spherocylinder, which
is proportional to m /n. Naively, one would expect the caps
of a spherocylinder to buckle when the effective FvK num-
ber of a cap, �1/2�YScap/�, is of order the buckling threshold
�B of an icosahedral shell �with Scap the surface area of one
of the caps�. Since the ratio S /Scap for a spherocylinder
equals �1+h /2	�, with h /2	 the aspect ratio, one would ex-
pect the buckling threshold to be a linearly increasing func-
tion of the aspect ratio. The result of a fit of �B�m ,n� as a
function of the m /n ratio is shown in Fig. 10.

The buckling threshold indeed has a linear dependence on
m /n—which is proportional to the aspect ratio—but �B�m ,n�
in fact decreases with increasing aspect ratio. This means
that the misfit energy of a disclination increases with the
aspect ratio of the spherocylinder.

Next, we compared the energy of the icosahedral shell
with that of a 7-5 conical shell with lattice vectors m=42,
n=22, h=1, k=0 and with 30 422 sites �see Eq. �2.7��. The

surface area is again about 0.5% larger than that of the icosa-
hedron and the corresponding error in the energy is of the
order of 0.1� for FvK numbers in the range of 104 �see Fig.
11�.

The elastic energy of the cone is noticeably larger than
that of both the spherocylinder and the icosahedron. This is
consistent with the analytical results of Sec. III, where we
found that this was due to the extra bending energy of the
cone region. It seems that, unlike the spherocylinder, the
conical structure does not “compete” with the icosahedral
shell, at least in the absence of spontaneous curvature effects.
The numerical results can be fitted rather well by Eqs. �3.14�
and �3.15� with B	1.36 and �B	4,486. The dependence of
the buckling threshold on the cap size ratio m /n is shown in
Fig. 12.

In contrast with Fig. 10, the buckling threshold now in-
creases with the cap size ratio, which indicates a decreasing
disclination elastic energy. Even though, over the same range
of m /n values, the fitted B coefficient increased from 1.28 to
1.35, the misfit energy indeed does decrease with increasing
m /n when assuming the expression B�1+ln�� /�B�� for the

FIG. 10. Dependence of the buckling
threshold parameter �B of a spherocylinder
�SC�—relative to that for a sphere �S�—on the
m /n ratio, which is proportional to the size aspect
ratio. The values of �B were obtained from a fit of
Eq. �3.14� to the results of numerical energy
minimization.

FIG. 11. Elastic energy E /� of a conical shell with m=42,
n=22, h=1, k=0 �thick line� and the icosahedral shell with h=55
and k=0 �thin line� for the case of zero spontaneous curvature ob-
tained by numerical minimization as a function of the FvK number
�=YS /�. Note the pronounced negative Gaussian curvature of the
shell. The dotted line shows the result of a fit to Eq. �3.14� with
B	1.36 and �B	4486.
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disclination self-energy above the buckling threshold. This
leads to the surprising result that the misfit energy appears to
favor a conical structure.

Next we included the spontaneous curvature energy in
order to determine a shape phase diagram with the FvK num-
ber � and the spontaneous curvature � as coordinates. We
determined for given � and � the elastic energy of both the
spherocylinder and the cone over a range of m and n values.
The m and n values were chosen so that the number of sites
always is within 0.5% of that of the T=552 icosahedral ref-
erence structure. We then picked the m and n numbers of the
structure that had the lowest energy. The basis vectors of the
template were always taken to lie along one of the lattice
directions of the hexagonal lattice. Although the spontaneous
curvature term significantly alters the relative energy balance
of the competing shapes, the actual shape of a shell changed
by only a minimal amount as compared with the case of zero
spontaneous curvature.

The resulting shape phase diagram is shown in Fig. 13.
The vertical axis is the FvK number and the horizontal axis
�= �2�0 /�3a�S1/2.

Only spherical and spherocylindrical shells appear in the
phase diagram, as already predicted by the theory of Sec. III
�Fig. 8�. For low FvK numbers, the transition between these
two structures �solid line� takes place reasonably close to the
boundary line predicted by the analytical theory �dashed
line�. The m /n ratio of the spherocylinder at the transition
equals 121/25. Figure 14�a� shows the dependence of the
elastic energy on the m /n ratio at the transition point when �
equals 873.

The energy barrier separating the two degenerate struc-
tures is of the order of the bending energy constant � as for
the �=0 Helfrich theory. The elastic energy of a conical shell
for the same values of � and � rises rapidly as a function of
the m /n ratio.

When the FvK number approaches the buckling threshold,
the value of the critical spontaneous curvature rapidly shifts
to lower values of the spontaneous curvature, as predicted by
the analytical theory �see Fig. 8�, but it never drops below
about one-third of the maximum value at �=0. For low
enough values of the spontaneous curvature, i.e., ��3, the

icosahedral shell is in fact stable for any FvK number. As
already noted, the physical origin of the stability of the icosa-
hedral shell can be traced to the lower misfit energy �relative
to that in the spherocylinder� of the fivefold disclination
sites.

As we increase the FvK number beyond the buckling
threshold, the aspect ratio of the spherocylinder at the tran-
sition point is clearly reduced. Figure 14�b� shows the depen-
dence of the elastic energy of spherocylinder and cone for a
FvK number � equal to 27 289, again at the transition point
��=4.6� between spherical and spherocylinderical shells.
The energy barrier is significantly reduced as well, to a value
of less than 0.1� At even higher FvK numbers, the aspect
ratio of the spherocylinder starts to increase again �see Fig.
13�. Recall that in the Lobkovsky scaling limit the transition
should be weakly first order, with an energy barrier of about
3% �see Fig. 5�a��, and a large aspect ratio. Our results sug-
gest that the sphere-to-spherocylinder transition could be
continuous near the buckling threshold but this cannot be
ascertained within our numerical precision of 0.5% of the
total energy.

The energy of a conical shell rises rapidly at the transition
line as a function of the m /n ratio �see Fig. 14�b��. However,
according to the Lobkovsky scaling theory, it is possible that

FIG. 12. Dependence of the buckling threshold value �B of a
conical shell �C�—relative to that for a sphere �S�—on the m /n
ratio, which is proportional to the cap size ratio. The values of �B

were obtained from a fit of Eq. �3.14� to the results of numerical
energy minimization.

FIG. 13. �Color online� Shape phase diagram. The vertical axis
is the FvK number �=YS /�; the horizontal axis is the dimension-
less spontaneous curvature �= �2�0 /�3a�S1/2. For low �, icosahe-
dral shells are stable for all FvK numbers. The buckling threshold
�B separates spherical from polyhedral shells. For increasing � and
FvK numbers below the buckling threshold, a first-order transition
line separates spherical and spherocylindrical shells. The m /n ratio
of the spherocylindrical shell along the transition line equals
121/25. For increasing � and FvK numbers above the buckling
threshold, the aspect ratio of the spherocylinder at the transition line
is reduced and the transition is either weakly first order or continu-
ous. The solid line shows the phase boundary between sphere and
spherocylinder according to the theory described in Sec. III �see
Fig. 8�.
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for larger m /n ratios the energy of conical shells should start
to decrease �see Fig. 5�b��. We indeed find that this can take
place but only at larger values of the spontaneous curvature.
Figure 15 shows the cone and spherocylinder energy, again
for �=27 289 but now at about twice the critical spontaneous
curvature ��=8�.

The elastic energy of the cone develops a minimum for
m /n=2. The shape of the shell at the minimum is shown in
the figure, and its energy is lower by about 1.5� compared
with that of the icosahedral shell, though higher by about 3�
than that of the spherocylinder at its minimum energy con-
figuration.

V. DISCUSSION

In this concluding section, we discuss predictions of the
continuum theory that can be directly confronted with stud-

ies on viral assembly. In order to carry out a comparison it is,
however, critical to know approximate values for the phe-
nomenological constants that enter the theory.

A. The Young’s modulus and bending constant of viral capsids

The FvK number of a virus can be determined by fitting
shell shapes calculated on the basis of the continuum theory
to the structure of capsids as determined by x-ray crystallog-
raphy or Cryo-TEM. This procedure was carried out by
LMN for the yeast L-A virus, which has a diameter of
43 nm. They obtained a value of YR2 /�	547, so the ratio of
the Young’s modulus and the bending constant for the L-A
virus would be Y /�	1.24 nm−2. They found a similar value
of Y /� �larger only by 30%� from fitting the shape of the—
unrelated—bacteriophage HK-97, so we will assume that
Y /�	nm−2 for viral shells in general.

There are at least two different ways to proceed in esti-
mating the individual values of the Young’s modulus and of
the bending constant. The first method is by fitting the elastic
energy of a spherical shell computed within continuum
theory to the results of numerically determined energies of
capsid shells. In a recent Monte Carlo simulation of a coarse-
grained capsomer model, for example, the total energy of
spherical caspids was computed as a function of the number
N of capsomers, up to N=80 �31�. When one fits the con-
tinuum energy �see Fig. 2� to the results of that simulation,
one obtains a value for � that is of the order of the capsomer-
capsomer cohesive binding energy �. This cohesive binding
energy has been computed in semiempirical all-atom numeri-
cal simulations �32� as well as measured by thermodynamic
means �33� for the T=4 hepatitis B virus. In both cases � was
found to be of the order of �10–15�kBT. It would then follow,
from �	� and the earlier estimate of Y /�, that the Young’s
modulus is about 10kBT per nm2.

The second method to estimate Y and � is by measuring
the mechanical deformation of capsids. Atomic force micros-
copy �AFM� studies of two �unrelated� viruses—�29 �34�

FIG. 14. Dependence of the elastic energy E, in units of the bending constant �, of the spherocylinder �black line� and cone �gray line�
on the m /n ratio at the transition point. �a� The FvK number �=873 is below the buckling threshold; the energy barrier separating sphere and
spherocylinder is of the order of �. �b� The Fvk number �=27 289 is above the buckling threshold; the energy barrier is of the order of 0.1�.
The energy of the spherocylinder �black line� is nearly independent of the m /n ratio.

FIG. 15. Dependence of the elastic energy of the cone �gray
line� and the spherocylinder �black line� on the m /n ratio at about
twice the critical spontaneous curvature and with an FvK number �
about twice the buckling threshold. The cone energy has a mini-
mum for m /n=21/11 and the spherocylinder energy has a mini-
mum at m /n=121/25.
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�60 nm diameter� and CCMV �35� �30 nm diameter�—report
that under an applied load a capsid shell responds like a
harmonic spring with a spring constant of about 0.1 N/m.
Since the spring constant of an elastic shell is of the order of
��Y /R according to continuum elasticity theory �36�, one
can combine the measured value of the spring constant and
the earlier value of Y /� to obtain a value for Y that is of the
order of 1 N/m and a value for � of the order of 10−18 J. One
also can estimate the 2D Young’s modulus Y of a protein
shell by multiplying its 3D Young’s modulus �a little less
than a GPa, say, as approximated by that of a bulk protein
material such as silk� with the typical nanometer thickness of
a viral shell �2–3 nm�. This again gives about 1 N/m for Y,
while the bending constant—estimated as the 3D Young’s
modulus times the cube of the shell thickness—would again
be 10−18 J.

If the estimates for the elastic moduli produced by the
second method were valid, then the stored equilibrium elastic
energy of a large capsid—about 20� according to Fig.
2—would be as large as 104kBT while the total cohesion
energy of a capsid, as measured by thermodynamic means, is
actually only of the order of 103kBT �again for the hepatitis B
virus�. This would imply that self-assembly of capsid shells
was impossible. It is in fact known, from single-molecule
studies, that protein-protein interaction forces and energies
measured by AFM at finite force loading rates—about
10–100 pN/s—can be much higher than the actual equilib-
rium values. For these reasons, we will adopt the estimates
of � and Y of the first method.

B. Capsid self-assembly and polydispersity

Here we consider briefly the predictions of the continuum
theory in the context of the theory of self-assembly under
conditions of thermodynamic equilibrium. The relevance of
equilibrium theory for viral assembly can be questioned—
fully formed capsids are unlikely to be in equilibrium with a
solution of subunits—but it has been shown to be applicable
in particular well-studied cases. For example, over 30 years
ago, Bancroft and Butler and Adoph demonstrated �15� that
capsids of CCMV could be self-assembled from pure protein
at low pH, disassembled at high pH, and then reassembled
back at the original low pH.

Under conditions of thermodynamic equilibrium, the con-
centration c�S� of capsids constructed from S capsomers is
given by the Boltzmann distribution c�S�e��−�c+��S−E�S��/kBT

with �c the solution chemical potential of the capsomers, �
the cohesion energy per capsomer of an infinite flat hexago-
nal protein sheet, and E�S� the energy cost of closing the
sheet into a shell, as computed for example in the preceding
sections. As the chemical potential is increased, capsid shells
will start to form when ��=−�c+� approaches zero. It fol-
lows from the Boltzmann distribution that when two capsids
with a different structure—but the same number of
subunits—have E�S� values that are within a few kBT of each
other, then we should expect to encounter both structures in a
self-assembly experiment carried out under conditions of
thermodynamic equilibrium. Self-assembly of a monodis-
perse solution of capsids requires E�S� to have a well-defined
maximum.

For the case of an icosahedral shell with zero spontaneous
curvature, we saw in Sec. III that E�S� is a logarithmic func-
tion of S beyond the capsid area SB of a capsid at the buck-
ling threshold �see Eq. �3.5��. This means that for larger S the
equilibrium profile c�S� should exhibit a power-law depen-
dence on S in the absence of spontaneous curvature. The
power-law divergence is truncated when S drops below SB:

c�S�  �e−���S+6B��/kBT�SB/S�6B�/kBT �S � SB,C0 = 0� ,

e−���+AY/4��S/kBT �S � SB,C0 = 0� .
�
�5.1�

It follows from Eq. �5.1� that if the exponent 6B� /kBT of the
power law is large compared to 1, then capsid formation—as
�� approaches zero—is restricted to S values of order the
buckling threshold SB or smaller. Note too that below the
buckling threshold, the effect of elastic stress simply
amounts to a renormalization of the cohesive energy. When
the value of 6B� /kBT decreases, the power-law tail broadens.
When 6B� /kBT drops below 1, c�S� cannot be normalized at
the capsid formation threshold ��=0. In that case, we should
expect to find a collection of aggregates with a very wide
distribution in capsid sizes.

For the case of a fluid shell—i.e., the Helfrich limit—but
with non-zero spontaneous curvature, the equilibrium size
distribution equals

c�S�  exp�4��C0S1/2 − �1

2
C0

2 + ��/��S��/kBT�
�5.2�

using Eq. �3.4�. This size distribution has a maximum at
S*=4���C0�2 / ���+ 1

2�C0
2�2, and the relative width ��S2� /S*2

of its maximum equals kBT /8�� in that regime. The location
of the maximum depends on the chemical potential but it
equals the �expected� value of 16� /C0

2 for �� small com-
pared to �C0

2. The peak in the distribution “survives” the
introduction of elastic stress if the peak position S* is located
below the buckling threshold, since the effect of elastic strain
in that regime only amounts to a renormalization of the
chemical potential �the peak position coincides in that re-
gime with the minimum of the elastic energy shown in Fig.
6�. Above the buckling threshold, the peak in c�S� only sur-
vives if the �positive� curvature of the �SB /S�6B�/kBT power
law at S=S* is small compared to the �negative� curvature of
the peak distribution exp�− 1

2 �S−S*�2 / ��S2��. This condi-
tion is obeyed when ��S2� /S*2 is small compared to
kBT /6B�. Since ��S2� /S*2=kBT /8�� is actually of the same
order for B	1.3, it follows that the peak is either suppressed
or seriously broadened. A numerical plot �not shown� dem-
onstrates that the self-assembly peak is in fact completely
suppressed by the addition of the elastic stress term.

C. Shape degeneracy along the sphere-to-spherocylinder
transition line: Encounter with experiment

The transition between sphere and spherocylinder was
found to be weakly first order or continuous for FvK num-
bers near and above the buckling threshold. The elastic en-
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ergy function E�S� does have minima as a function of S. The
energy barrier separating them is, however, only of the order
of 0.1� as shown in Fig. 14�b�; this is of the order of the
thermal energy kBT, according to the estimates of Sec. V A,
which is too low to produce well-defined peaks in the c�S�
function. We thus should expect to encounter extensive shape
diversity at the transition line between sphere and spherocyl-
inder in a self-assembly study of viral capsids. Note, from
Fig. 14�b�, that cones with m /n values close to 1, such as
m /n=52/49, also are within a few kBT of the energy of the
sphere and the spherocylinder.

Self-assembly studies of viral capsids that report both
icosahedral and tubular structures as a function of physico-
chemical control parameters—e.g., pH, salinity, or Ca2+

ions—are available for CCMV �15� alfalfa mosaic virus
�17,37�, the polyoma/SV40 virus �38�, and HIV-1 �18,25�.
The study of SV40 virus reports �37� that pentamers effi-
ciently assemble into shells in the presence of 1M NaCl and
2 mM CaCl2 at neutral pH. At low temperatures and in the
presence of ammonium sulfate, they form native T=7
capsids �see Fig. 16�a�, with no genome molecules present�.
At room temperature and no ammonium sulfate, they form
small T=1 icosahedral particles and tubular structures �Figs.

16�b� and 16�c��. The tubular shells have a wide range of
aspect ratios. Although this was not remarked upon by the
authors, conical structures are in fact clearly visible as well
�see Fig. 16�b��. Finally, in the presence of 150 mM NaCl at
pH 5, very long tubular shells appear.

Turning to CCMV, self-assembly studies of CCMV capsid
proteins without genome molecules report that the native
T=3 shell forms �20 nm diameter� for pH levels below 5.5
and for moderate salinity. At low ionic strength �near neu-
trality� and pH above 6, single- and double-walled tubular
shells form having diameters of 16 and 25 nm, respectively.
In the transition region between the two structures, around
0.1M salt and pH 5.0, shell shapes are indeed unstable with
respect to ellipsoidal and, occasionally, conical shells. Fi-
nally, addition of viral RNA stabilizes the T=3 shell.

The structural degeneracy of SV40 and CCMV self-
assembly appears to have no biological function, but this is
not the case for AMV. An AMV self-assembly study reports
that the shape of AMV capsid protein aggregates depends
sensitively on the presence of single-stranded RNA. For in-
stance, at a pH of 8.0 and in the presence of AMV RNA,
spherical and ellipsoidal shells are observed of various
length. No clear examples of conical AMV shells are seen.
Self-assembly with more rigid �double-stranded� DNA mol-
ecules produces extremely long cylinders. This suggests that,
under natural conditions, AMV is located near the transition
line of the shape phase diagram of Fig. 13. In the presence of
RNA molecules, the interaction between the shell and the
RNA would determine the actual morphology. This structural
degeneracy is apparently exploited by the virus since the
AMV genome consists of RNA molecules of various lengths
that are packaged in different sized capsid shells. There thus
appears to be no lack of evidence for a region of structural
degeneracy in the self-assembly phase diagrams of polymor-
phic viruses that is similar to the one encountered in the
continuum theory. It should be noted however that the
CCMV and AMV examples involve shells with a typical
diameter of the order of 20 nm. It is a rather questionable
assumption that the continuum theory can “work” in this
regime and it would be interesting to investigate whether the
structural degeneracy feature of the continuum theory will
“survive” in a discrete description of small capsids.

In contrast, an example where continuum theory really is
expected to be applicable are core particles of the HIV-1
virus. The immature HIV capsid is spherical, though not
icosahedral, with diameters in the range of 120 to 260 nm
�39�. After cleavage of the Gag capsid protein into CA
�“capsid”� and NC �“nucleocapsid”� proteins—plus a matrix
protein—the core reforms into a conical shell with a size of
about 100 nm �majority case� plus a smaller fraction of tu-
bular particles. The aperture angle of the cones—about
18°—is consistent with a dominant 5-7 pentamer distribu-
tion. Solutions of viral RNA, CA, and NC proteins readily
self-assemble into conical and tubular shells very similar to
the wild-type core particles. In the absence of viral RNA,
conical shells form only at high salinity. Solutions of the CA
protein by itself produce spherical and tubular shells, with a
sharp transition taking place around pH 7.

This would indicate that CA protein shells are, under
natural conditions, again located in the degeneracy region of

FIG. 16. In vitro self-assembly of the VP1 capsid proteins of
SV40 �from Ref. �38��. �a� Electron micrograph of VP1 assembly in
2M ammonium sulfate and 2 mM CaCl2 �pH 7.2� at 4 °C. V, virus-
sized shell; I, intermediate particle; Ti, tiny particle. �b� Electron
micrograph of VP1 assembly in 1M NaCl and 2 mM CaCl2
�pH 7.2� at room temperature. Tu, tubular structure. Arrow, conical
structure. �c� Higher magnification of virus-sized shells, intermedi-
ate particles, tiny particles, and a tubular structure observed in �b�.
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Fig. 13, with the actual shell structure being determined by
RNA-protein interactions. Recent structural cryoTEM to-
mography studies �18� of individual HIV virions from a
single infection show a dramatic polydisperisity in size and
shape of nucleocapsids. Noninfectious virus-like particles
�VLPs� were produced in culture by introducing mutations in
the reverse transcriptase and Rnase H enzymes and by pre-
venting expression of the envelope protein. Tens of VLPs
were selected for viewing along three orthogonal directions,
as shown in Fig. 17. Note that, in addition to cones, there are
many tubelike and irregularly globular shapes.

The FvK number of the �mature� cone is of the order of
20 000, well above the buckling threshold. According to our
results, conical capsids with FvK numbers in this range do
constitute a well-defined local minimum of the elastic energy
with m /n ratios between 1.5 and 2 and spontaneous curva-
tures about twice the critical value �see Fig. 15�. These cones
have a lower energy than the sphere but still a higher energy
than spherocylindrical shells. One possibility for explaining
how cones appear in spite of this energy ordering is that the
spherocylinder has a lower volume than the cone with equal
area, so self-assembly in the presence of the RNA genome
might preclude formation of the spherocylindrical shells.

D. Spontaneous curvature versus scaffolding

A second point of confrontation between continuum
theory and experimental studies of viral assembly concerns
size selection of capsids. We found in Sec. V B that sponta-
neous curvature could produce a well-defined peak in the
concentration profile c�S� only for capsid sizes below the

buckling threshold. For capsid sizes above the buckling
threshold, size selection by spontaneous curvature is
“spoiled” by the negative curvature of E�S� �see Fig. 2�. A
second condition is that the dimensionless parameter
6B� /kBT has to be large compared to 1. If these conditions
are not met, then a separate size-selection mechanism must
be operative, such as scaffolding. The second condition is
certainly satisfied since 6B� /kBT is of the order of 100, using
the estimates of Sec. V A.

We first recall that evidence for size control by spontane-
ous curvature is available mostly for the smaller T=3 RNA
viruses, which indeed never require scaffold structures for
self-assembly. Next, the hepatitis B virus and the Nudaurelia
capensis � virus �40� are examples of T=4 viruses whose
capsid proteins assemble into T=4 shells without scaffold or
genome molecules, both in vitro and in expression systems.
The case of T=7 is more complex. For example, the T=7
double-stranded DNA phages in general rely on scaffold pro-
teins for assembly �41�, but in a somewhat equivocal manner.
For instance, self-assembly of P22 capsid proteins without
scaffold proteins actually does produce wild-type T=7 pro-
capsids but also smaller T=4 shells �42� while self-assembly
with scaffold proteins produces only T=7 shells. The P22
case is somewhat analogous to the SV40/polyoma DNA vi-
rus in which case capsid proteins in solutions assemble into
T=7 and T=1 caspids, as well as nonicosahedral 24-
capsomer particles. In the presence of a condensed DNA
genome, only the T=7 virus is formed. On the other hand,
for the T=16 herpes simplex virus I the essential role of the
scaffold during assembly is well documented, e.g., a self-
assembly study �43� of herpes capsid proteins with a variable
concentration of scaffold proteins reported that T=16 wild-
type 100 nm diameter procapsids formed at higher scaffold
protein concentrations. Below a critical concentration, the
capsids collapsed to smaller shells with a 78 nm diameter. It
does not appear to be known whether another T=16 virus,
cytomegalovirus, or the T=25 adenovirus requires a scaffold
for assembly. The current data thus suggest that T=7 repre-
sents the borderline at which capsid assembly might no
longer rely on spontaneous curvature as a mechanism for
size control.

In summary, we have presented a shape phase diagram for
capsid self-assembly based on continuum elasticity theory,
with dimensionless spontaneous curvature and the ratio of
stretching to bending energies as the relevant degrees of free-
dom. The two main predictions include �1� the existence of a
degeneracy region in the shape phase diagram—at interme-
diate values of both the spontaneous curvature and the ratio
of stretching to bending energies—where we find the simul-
taneous presence of cones, tubes, and spheres; and �2� a limit
�around T=7� to the capsid size at which a monodisperse
distribution is possible without scaffolding proteins playing a
role. These behaviors are shown to be consistent with pres-
ently available experimental data.

We emphasize the central role played by the bending
modulus of viral capsids and conclude that further work
needs to be done on calculating and measuring this funda-
mental property. On the one hand, an experiment determin-
ing the spring constant of a large capsid, such as that of
herpes simplex, for which continuum theory should apply,

FIG. 17. �Color online� CryoTEM tomography images of sev-
eral tens of noninfectious HIV-1 virions, each shown along three
orthogonal directions. A variety of conical, rodlike, and other
shapes are found from a single cell culture.
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would be very helpful. On the other hand, a semiempirical
computation of this spring constant by a numerical simula-
tion of an atomistic model would be useful as well.

Finally, while we do find the cone to appear as a mini-
mum of the elastic shell Hamiltonian for intermediate values
of the spontaneous curvature and the ratio of stretching to
bending energies, it still has a higher energy than a sphero-
cylinder of the same area. To reconcile this result with the
experimentally observed fact that isometric HIV-1 cones ap-
pear as a more prevalent species, we must consider physical
considerations that have not been included in the present
theory. In particular, it is quite likely that the cone shape is
stabilized relative to tubes and spheres through the role

played by the viral RNA, i.e., by the interaction between this
anionic polymer and the cationic N termini of the proteins
comprising the shell of the mature virion. Consideration of
the kinetics of formation of the capsid aggregates is also
likely to provide insights into the surprising prevalence of
the conical shapes.
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